

Method of Group Decision Making for Production Planning of the Oil Refinery Plant

Shixaliyev Kerem Sefi, Vaqif.H. Səlimov

Abstract : This article is devoted to the problem of decision making under uncertainty. An aggregated approach is used that combines optimization and choice of a solution, which makes it possible to obtain a more realistic solution. The criteria in the vector optimization problem are: profit, product quality, employee satisfaction. To solve the optimization problem, 3 methods were used: "Goal programming", "Interactive", "FMOLP". The task of group decision making is implemented on the basis of the package FGDSS-CD (Fuzzy group Decision Support System).

Keywords: Uncertainty, group decision making, planning, oil refinery plant, fuzzy, goal programming, interactive, FMOLP

I. INTRODUCTION

 \mathbf{T} he group decision making methods have been developed for solving semi structured and unstructured problems [1-6], so for problems with high level of uncertainty of information. Uncertainty can be related with imprecise of given data and with uncertainty of goals so when we have several contradictory objectives. These methods usually are used for problems where alternatives are presented in non numerical values. As rule the preferences of experts are expressed by linguistics terms. In systems are based on group decision making technology, the experts make decisions by evaluation of proposed alternatives. The evaluation process is based on the intuition, experience and special algorithm of achieving consensus.[7-9].

General structure of group decision making is presented on Fig. 1.

Fig. 1. General structure of group decision making

Manuscript received on 27 July 2021 | Revised Manuscript received on 04 August 2021 | Manuscript Accepted on 15 August 2021 | Manuscript published on 30 August 2021. * Correspondence Author

Shixaliyev Kerem Seyfi*, Professor, Department of Organic Substances and Technology of Macromolecular Compounds Azerbaijan State Oil and Industry University, Baku, Azerbaijan

Vaqif.H. Səlimov, Azerbaijan State Oil and Industry Universitety kerem_shixaliyev@mail.ru

© The Authors. Published by Lattice Science Publication (LSP). This is open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

If necessary, in general structure can be included the blocks for conversation pair wise values into absolute ones and normalization procedures. The most known methods are following

- ELECTRE method (Elimination and Choice Expressing

Reality);[10-12]/

- AHP method (Analytic hierarchy process);
- TOPSIS method (Technique for order Preference by

similarity to ideal solution) and others;

The ELECTRE method was first method of classification alternatives. It was proposed by French scientist B.Rua. AHP method was proposed by American scientist T.Saati for analysis situation where application of mathematical methods is impossible. TOPSIS method use the approach where decision based on compromise of maximum distance from negative ideal and minimum distance from positive ideal decisions.

Consider the general scheme of group decision making. The group of experts E_k (κ =1,..L) are given. For any expert is assigned the weight coefficient $W_k(k=1,...,L)$. This coefficient is reflects the trust level of expert. The set of criteria for evaluation of alternatives are given

 $j = 1, ..., m_{n}$

For any criteria the weight is assigned V_{j} (j = 1, ..., m)Also the set of alternatives is determined

$$A_{i}, i = 1, ..., n$$

The process of determination of optimal alternative can be describe by two stage procedure . This process can be presented in pay off table form .

 ν_m

www.ijcgm.latticescipub.co

$$v_1 \quad v_2$$

Retrieval Number: 100.1/ijcgm.B7001081221 DOI:10.54105/ijcgm.B7001.081221 Journal Website: www.ijcgm.latticescipub.com

Lattice Science Publication © Copyright: All rights reserved.

Published By:

Here $\overline{C}_{i}^{(k)}$ -is aggregative value of i-th alternative by **k**-th expert, C_{ij} -value of i-th alternative by j-th criteria C_{ij} are determine by expert by estimation. For any expert E_k the payoff matrix is built. For any κ alternative aggregative values $\overline{C}_{i}^{(k)}$

$$\sum_{j=1}^{m} c_{ij} v_j = \overline{C}_l^{(k)} \quad k = \overline{1, l}, \quad i = \overline{1, n}$$

In second stage the matrix of values by all experts is established. All operations are performed on base of fuzzy approach.

	w_1	w_2		w_l	
	E_1	E_2	E_{k}	E_{i}	C_1^*
A_1	$C_{1}^{(l)}$	$C_1^{(2)}$	$C_1^{(k)}$	$C_1^{(l)}$	C_2^*
A_2					
A_n	$C_n^{(1)}$	$C_{n}^{(2)}$	$C_n^{(k)}$	$C_n^{(l)}$	C_n^*

On base of weight coefficients of expert

 w_k $k = 1, \ell$ the aggregative value for any alternative are determined.

$$\sum_{k=1}^{\iota} w_k C_k^* = C_i^*$$

The process is finished by determination of optimal

alternative so aggregative solution by all experts C_i^* .

$$i^* = \max_i C_i^*$$

All group decision making methods are based on this general scheme, Fuzzy versions of this approach differs on usage of linguistic variables.

Consider the planning of oil refinery plant. The problem is present in multicriteria variant. Refinery process consists of two units: production and compound. (Fig.2)

Fig. 2. The major units of oil refinery process

Production unit realize two stages oil refinery process. In the first stage is conducting of primary oil processing, in the next stage the catalytic cracking and coke processes are performing. In production unit are produced the fraction which are used needed for manufacturing car petrol.

II. METHOD

The fuzzy planning problem statement

In last years many scientists for planning problem use multicriteria problem where are used economical, social

and ecology criteria. In this connects the fuzzy problem statement can be presented as following:

Fuzzy Goal function includes three functions : profit, product quality, worker satisfaction

2

Lattice Science Publication © Copyright: All rights reserved.

Published By:

$$\max \tilde{f}(x) = \max \begin{pmatrix} \tilde{f}_{1}(x) \\ \tilde{f}_{2}(x) \\ \tilde{f}_{3}(x) \end{pmatrix} = \max \begin{pmatrix} \tilde{c}_{11}x_{1} + \tilde{c}_{12}x_{2} + \tilde{c}_{13}x_{3} \\ \tilde{c}_{21}x_{1} + \tilde{c}_{22}x_{2} + \tilde{c}_{23}x_{3} \\ \tilde{c}_{31}x_{1} + \tilde{c}_{32}x_{2} + \tilde{c}_{33}x_{3} \end{pmatrix} = \max \begin{pmatrix} 28\tilde{8}x_{1} + 2\tilde{9}0x_{2} + 3\tilde{0}0x_{3} \\ \tilde{8}x_{1} + \tilde{5}x_{2} + \tilde{3}x_{3} \\ \tilde{8}x_{1} + \tilde{5}x_{2} + \tilde{3}x_{3} \\ \tilde{4}x_{1} + \tilde{8}x_{2} + \tilde{6}x_{3} \end{pmatrix}$$

fuzzy constraints:

Resource constraints :

HK-85 fraction: $\tilde{a}_{11}x_1 + \tilde{a}_{12}x_2 + \tilde{a}_{13}x_3 = 0.2\tilde{2}89x_1 + 0.0\tilde{1}028x_2 \le b_1 = 27611.9$ Stabile platformate

$$\tilde{a}_{21}x_1 + \tilde{a}_{22}x_2 + \tilde{a}_{23}x_3 = 0.0691x_1 + 0.3494x_2 + 0.7857x_3 \le b_2 = 386214$$

Coker gasoline: $\tilde{a}_{31}x_1 + \tilde{a}_{32}x_2 + \tilde{a}_{33}x_3 = 0.0846591x_1 \le \tilde{b}_3 = 6925.4$
high-octane component:

$$\begin{split} \tilde{a}_{41}x_1 + \tilde{a}_{42}x_2 + \tilde{a}_{43}x_3 &= 0.4\tilde{9}01x_1 + 0.\tilde{6}402x_2 + 0.2\tilde{1}42x_3 \leq \tilde{b}_4 = 61\tilde{4}955 \\ \text{Virgin gasoline: } \tilde{a}_{51}x_1 + \tilde{a}_{52}x_2 + \tilde{a}_{53}x_3 = 0.\tilde{0}4718x_1 \leq \tilde{b}_5 = 38\tilde{5}8 \\ \text{HK-85-180 fraction: } \tilde{a}_{61}x_1 + \tilde{a}_{62}x_2 + \tilde{a}_{63}x_3 = 0.0\tilde{1}289x_1 \leq \tilde{b}_6 = 10\tilde{5}4.40 \\ \text{Hydro treated gasoline: } \tilde{a}_{71}x_1 + \tilde{a}_{72}x_2 + \tilde{a}_{73}x_3 = 0.\tilde{0}671x_1 \leq \tilde{b}_7 = 54\tilde{8}7.8 \\ \textbf{Plan constraints:} \end{split}$$

Production of gasoline A-80: $\tilde{a}_{81}x_1 + \tilde{a}_{82}x_2 + \tilde{a}_{83}x_3 = \tilde{1}x_1 \ge \tilde{b}_8 = 20\tilde{0}0$ Production of gasoline A-92: $\tilde{a}_{91}x_1 + \tilde{a}_{92}x_2 + \tilde{a}_{93}x_3 = \tilde{1}x_2 \ge \tilde{b}_9 = 20\tilde{0}0$ Production of gasoline A-95: $\tilde{a}_{101}x_1 + \tilde{a}_{102}x_2 + \tilde{a}_{103}x_3 = \tilde{1}x_3 \ge \tilde{b}_{10} = 20\tilde{0}0$ **Products quality constraints :**

$$\begin{split} \tilde{a}_{111}x_1 + \tilde{a}_{112}x_2 + \tilde{a}_{113}x_3 &= 0.27\tilde{7}569x_1 \geq \tilde{b}_{11} = 0\\ \tilde{a}_{121}x_1 + \tilde{a}_{122}x_2 + \tilde{a}_{123}x_3 &= 0.07\tilde{3}72x_2 \geq \tilde{b}_{12} = 0\\ \tilde{a}_{131}x_1 + \tilde{a}_{132}x_2 + \tilde{a}_{133}x_3 &= 0.0\tilde{0}62x_3 \geq \tilde{b}_{13} = 0 \end{split}$$
Balance constraints : $\tilde{a}_{141}x_1 + \tilde{a}_{142}x_2 + \tilde{a}_{143}x_3 = \tilde{1}x_1 + \tilde{1}x_2 + 1\tilde{x}_3 \leq \tilde{b}_{14} = 104\tilde{6}107.1$

Where x_1 -amount of gasoline A-80, x_2 - amount of

gasoline A-92, x_3 - amount of gasoline A-96.Coefficiets of objective functions and constraints are presented by fuzzy triangle numbers (LR) type.

$$\mu_{a}(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} < \mathbf{a} \text{ или } c < x \\ (x-a)/(b-a), & a \le \mathbf{x} < \mathbf{b} \\ 1, & x = b \\ (c-x)/(c-b), & b < x \le c \end{cases}$$

Retrieval Number:100.1/ijcgm.B7001081221 DOI:10.54105/ijcgm.B7001.081221 Journal Website: www.ijcgm.latticescipub.com

Published By: Lattice Science Publication © Copyright: All rights reserved.

3

III. RESULTS

This problem have been solved by three methods of multicriteria optimization : FMOLP, GOAL programming, Interactive method.

Consider the one scheme of group decision making to problem to find consensus of decision which have been achieved by three different methods. As results of solving oil refinery planning problem on base of multicriteria model with 3 criteria-profit, quality and worker satisfaction by methods, three different ("Goal programming ","Interactive", "FMOLP") are presented in Table 1.

	Table 1.	
"Goal programming" method	"Interactive" method	"FMOLP" method
X[1] = 42079,3098	X[1] = 48013.8179	X[1] = 42117.8841
X[2] = 897406,6352	X[2] = 901917.0926	X[2] = 898834.0329
X[3] = 88777.4486	X[3] = 65434.6646	X[3] = 88139.2835
$\tilde{f}_1(x) = 290\tilde{0}00000$	$\tilde{f}_1(x) = 29501\tilde{4}335.7861$	$\tilde{f}_1(x) = 29923\tilde{3}3636.19$
$\tilde{f}_{2}(x) = 509\tilde{0}000$	$\tilde{f}_2(x) = 509\tilde{0}000$	$\tilde{f}_2(x) = 509\tilde{5}531.98$
$\tilde{f}_3(x) = 788\tilde{0}235$	$\tilde{f}_3(x) = 780\tilde{0}0000$	$\tilde{f}_3(x) = 788\tilde{7}979.81$

These solutions are considered as alternatives A_1, A_2, A_3 and also group of experts E_1, E_2, E_3 are presented for find final decision of problem. For solving this problem is used

FGDSS-CD(Fuzzy group Decision software package Support System). In first stage are determined weight coefficients of any expert and list of criteria (Fig. 3.)

Step 2: Criteria and weights	
Set weights for group members	
E1	Important 👻
E2	More important 👻
E3	Normal
The total number of individual criteria: The number of the selected criteria:	3
✓ pront ✓ quality ✓ satisfaction	
Last step	[Next step]

Fig.3. The determination weight coefficients of experts and forming of criteria set.

In next step any expert enter the pairwise matrix of own preferences to the criteria and evaluate all alternatives . All operations are realized in the fuzzy formalism (Fig. 4)

			•			
iter having finis	hed your selections, pla	ease click on	Confirm			
			-it-si-			
rwise compans	on or the relative impos	ance or selection c	antena			
the following r	natrix, the element at "P	Row i'' and ''Column	n j'' is the comp	arison of the criterion at "	'Row i'' to the criteri	on at ''Column j''.
	profit	quality		satisfaction		
profit	Equally important	More import	ant	More important		
quality	Less important	Equally impr	ortant	Equally important		
				Equality important		
satisfaction	Less important	Equally impo	ortant	Equally important		
satisfaction	Less important	Equally impo	ortant	Equally important		
satisfaction	Less important	Equally impo	ortant	Equally important		
satisfaction	Less important	Equally impo	satisfac	Equally important		
satisfaction	Less important	Equally impo	ortant satisfad Highest	Equally important		
e possibility of a	Less important electing a solution und profit Highest Lowest	Equally impo	satisfa Highest Lowest	Equally important		
atisfaction possibility of s Atternative 1 Atternative 2 Atternative 3	Less important electing a solution und profit Highest Lovvest Medium	er a criterion quality Highest Lowest Medium	satisfad Highest Lowest Medium	Equally important		
e possibility of s Atternative 1 Atternative 2 Atternative 3	Less important ielecting a solution und profit Highest Lowest Medium	Equally inpo	satisfad Highest Lowest Medium	Equally important		
atisfaction possibility of s Atternative 1 Atternative 2 Atternative 3	Less important ielecting a solution und profit Highest Lowest Medium	Equally inpo	satisfa Highest Lowest Medium	Equally important		
e possibility of s Alternative 1 Alternative 2 Alternative 3	Less important selecting a solution und profit Highest Lowest Medium	Equally impo	satisfa Highest Lowest Medium	Equally important		

Fig. 4. Entering the pairwise preferences matrix and alternative's evaluation for expert E_1 .

Retrieval Number:100.1/ijcgm.B7001081221 DOI:10.54105/ijcgm.B7001.081221 Journal Website: www.ijcgm.latticescipub.com

4

Published By:

In next step was performed aggregation procedure by experts.(Fig.5.)

Fig. 5. The achievement of the final decision

As result of twice aggregation we have final decision (first alternative was selected).

IV. CONCLUSION

In this paper the method of group decision-making is developed for a solving problem of planning of process of oil refinery under uncertainty. From three results obtained by three decision groups wich applied various approaches, the problem of choosing an optimal solution was solved.

REFERENCES

- Leyva-Lopez, J.C., and E. Fernandez-González, (2003), "A new method for group decision support based on ELECTRE III methodology," European Journal of Operational Research, Vol. 148, pp. 14-27. [CrossRef]
- 2. Saaty T.L., Fundamentals of Decision Making and Priority Theory with the AHP, RWS Publications, Pittsburgh, PA, U.S.A., (1994).
- Jie Lu, Guangquan Zhang Da Ruan, Fendjie Wu.Multi-objective group decision Making. Imperial College Press, London, 2007, 390.
- Filip Andonov. An Interactive method for Group Decision Making. Problems of Engineering Cybernetics and Robotics, Bulgarian Academy of Sciences, Sofia, 2006. 57, pp. 3-7,
- Chung-Hsing Yeh, Yu-Hern Chang. Modeling subjective evaluation for fuzzy group multicriteria decision making. European Journal of Operational Research, Volume 194, Issue 2, 16 April 2009, Pages 464-473 [CrossRef]
- C.T.Chen. "Extensions of the TOPSIS for group decision-making under fuzzy environment," Fuzzy set anf Syatems., vol. 114. no. I. pp. 1-9, Aug. 2000. [CrossRef]
- 7. Base of technology processing of plastic mass. Text-book for high schools/S.V.Vlasov, M. "Chemistry", 2004, 600p.
- Amirov Fariz.Shixaliyev Kerem. Properties of Linear Low Density Polyethylene. International Journal of Innovative Technology and Exploring Engineering (IJITEE). Volume-9 Issue-9, July 2020.pp. 348-352 ISSN: 2278-3075. SCOPUShttps: //www.ijitee.org/download/volume-9-issue-3/
- Kerem Shixaliyev. Paint and Varnish Materials Based on Epoxy Novolac oliqomers Jour of Adv Research in Dynamical & Control Systems. Vol. 12, Special Issue-02, 2020.pp351-358
- Kerem ShixaliyexSefi..DETERMINATION OF COMPATIBILITY OF POLYMER SYSTEMS, SKEP, PU, KhKPE and CH EMICAL FEATURES OF THEIR MIXTURES. Jour of Adv Research in Dynamical & Control Systems. Vol. 12, Special Issue-02, 2020.pp359-370
- 11. Ermilova EA, Sizova AA, Ilyicheva NN, Pleshakov DV // Study of thermodynamic compatibility of a three-component mixture of nitramines with a copolymer of methyl methacrylate and methacrylic acid technology / Chemical successes. .-2014 №2.-p.65-67.

Retrieval Number:100.1/ijcgm.B7001081221 DOI:<u>10.54105/ijcgm.B7001.081221</u> Journal Website: <u>www.ijcgm.latticescipub.com</u> Turaev ER, Beknazarov HS, Akhmedov UK, Dzhalilov AT// Interfacial interactions of three-phase polypropylene composite materials./Universum.Technical sciences./- 2018-№12.-p.57

AUTHORS PROFILE

Shixaliyev Kerem Seyfi, Doctor of Technical Sciences, Professor-Academician of the European Academy of Natural Sciences Professor, Department of Organic Substances and Technology of Macromolecular Compounds Azerbaijan State Oil and Industry University, Baku, Azerbaijan

Published By: Lattice Science Publication © Copyright: All rights reserved.